Аннотация:
Исследуются спектральные свойства обыкновенных дифференциальных операторов четного порядка $2n$
с негладкими коэффициентами в дифференциальной операции: коэффициент при $(2n-1)$-й
производной – функция, суммируемая со степенью $s$, $s>1$, остальные коэффициенты – лишь суммируемые функции. Устанавливается интегральное представление для частичной суммы разложения функции в биортогональный ряд Фурье, справедливое в интегральной метрике на всем отрезке задания дифференциальной операции. В качестве ядер используются специальные “смещенные” ядра Дирихле.
Библиогр. 11 назв.