Аннотация:
Рассматривается ветвящийся процесс $Z_n$ в случайной среде с сопровождающим блужданием $S_n$, имеющим шаги $\xi_i$ со средним $\mu$, удовлетворяющие условию Крамера $\mathbf Ee^{h\xi_i}<\infty$, $0<h<h^+$. В каждый момент времени $i$ в процесс иммигрирует $\chi_i$ частиц, $\mathbf E\chi_i^h<\infty$, $0<h<h^+$. Предполагается, что число непосредственных потомков одной частицы при условии среды имеет геометрическое распределение. Показано, что добавление иммиграции для критических или надкритических процессов влечет только изменение мультипликативной константы в асимптотике вероятностей больших уклонений $\mathbf P\{Z_n\ge\exp(\theta n)\}$, $\theta>\mu$. Для докритических процессов аналогичный результат получен для $\theta>\gamma$, где $\gamma>0$ – некоторая константа. Для всех констант приведены явные выражения.
Ключевые слова:большие уклонения, случайные блуждания, ветвящиеся процессы, случайные среды, условие Крамера, процессы с иммиграцией.
УДК:519.218.2
Статья поступила: 24.11.2015 Переработанный вариант поступил: 17.07.2016