RUS  ENG
Полная версия
ЖУРНАЛЫ // Дискретная математика // Архив

Дискрет. матем., 2016, том 28, выпуск 3, страницы 28–48 (Mi dm1382)

Эта публикация цитируется в 5 статьях

Большие уклонения ветвящихся процессов с иммиграцией в случайной среде

Д. В. Дмитрущенков, А. В. Шкляев

МГУ им. М. В. Ломоносова

Аннотация: Рассматривается ветвящийся процесс $Z_n$ в случайной среде с сопровождающим блужданием $S_n$, имеющим шаги $\xi_i$ со средним $\mu$, удовлетворяющие условию Крамера $\mathbf Ee^{h\xi_i}<\infty$, $0<h<h^+$. В каждый момент времени $i$ в процесс иммигрирует $\chi_i$ частиц, $\mathbf E\chi_i^h<\infty$, $0<h<h^+$. Предполагается, что число непосредственных потомков одной частицы при условии среды имеет геометрическое распределение. Показано, что добавление иммиграции для критических или надкритических процессов влечет только изменение мультипликативной константы в асимптотике вероятностей больших уклонений $\mathbf P\{Z_n\ge\exp(\theta n)\}$, $\theta>\mu$. Для докритических процессов аналогичный результат получен для $\theta>\gamma$, где $\gamma>0$ – некоторая константа. Для всех констант приведены явные выражения.

Ключевые слова: большие уклонения, случайные блуждания, ветвящиеся процессы, случайные среды, условие Крамера, процессы с иммиграцией.

УДК: 519.218.2

Статья поступила: 24.11.2015
Переработанный вариант поступил: 17.07.2016

DOI: 10.4213/dm1382


 Англоязычная версия: Discrete Mathematics and Applications, 2017, 27:6, 361–376

Реферативные базы данных:


© МИАН, 2024