Аннотация:
Пусть $\mathcal{N}$ — множество из $N$ элементов и $F_1,F_2,\ldots$ — последовательность случайных независимых равновероятных отображений $\mathcal{N}\to\mathcal{N}$. Для подмножества $S_0\subset \mathcal{N}$, $|S_0|=n$, рассматривается последовательность образов $S_t=F_t(\ldots F_2(F_1(S_0))\ldots)$, $t=1,2\ldots$ Получены условия на $n$, $t$ и $N$, при которых распределение размеров образов $S_t$ асимптотически нормально.
Ключевые слова:случайные равновероятные отображения, композиции случайных отображений, асимптотическая нормальность.