Аннотация:
Рассматривается многотипный ветвящийся процесс Гальтона-Ватсона в случайной среде, задаваемой последовательностью независимых одинаково распределенных случайных величин. В предположении, что приращение $X$ сопровождающего случайного блуждания, порожденного логарифмами перроновых корней матриц средних этого процесса, удовлетворяет условиям $\mathbf{E}X<0$ и $\mathbf{E}Xe^{X}>0,$ а матрицы средних процесса имеют общий неслучайный левый собственный вектор, найдена асимптотика вероятности невырождения процесса в далекий момент времени.