RUS  ENG
Полная версия
ЖУРНАЛЫ // Дискретная математика // Архив

Дискрет. матем., 2019, том 31, выпуск 4, страницы 116–127 (Mi dm1587)

Эта публикация цитируется в 3 статьях

Распределение объёма наибольшей компоненты случайного $A$-отображения

А. Л. Якымив

Математический институт им. В.А. Стеклова Российской академии наук

Аннотация: Пусть $\mathfrak S_n$ — полугруппа отображений множества $X$ из $n$ элементов в себя. Рассматривается совокупность $\mathfrak S_n(A)$ отображений из $\mathfrak S_n$, объёмы контуров которых принадлежат множеству $A\subseteq N=\{1,2,\ldots\}$. Эти отображения принято называть $A$-отображениями. Пусть случайное отображение $\tau_n$ имеет на $\mathfrak S_n(A)$ распределение с весами $\vartheta_i\geq 0$ связных компонент объёма $i\in N$. Предполагается, что если $i\to\infty$, то $\vartheta_i\to\vartheta>0$ при $i\in D\subset N$ и $\vartheta_i\to0$ при $i\in N\setminus D$. Пусть $\mu(n)$ — объём максимальной по размеру компоненты случайного отображения $\tau_n$. Для некоторых классов множеств $A$ и $D$, имеющих асимптотические плотности $\varrho>0$ и $\rho>0$ в $N$, показано, что случайная величина (с.в.) $\mu(n)/n$ слабо сходится при $n\to\infty$ к с.в. $\nu$, распределение которой совпадает с предельным распределением соответствующей характеристики в схеме Эвенса случайной подстановки с параметром $\rho\varrho\vartheta/2$.

Ключевые слова: случайные $A$-отображения с весами компонент, объём наибольшей компоненты.

УДК: 519.212.2

Статья поступила: 31.07.2019

DOI: 10.4213/dm1587


 Англоязычная версия: Discrete Mathematics and Applications, 2021, 31:2, 145–153

Реферативные базы данных:


© МИАН, 2024