Аннотация:
Нелинейность векторной функции и нелинейность ее ограничения на многообразие определены как расстояние Хэмминга до множества аффинных отображений и их ограничений на это многообразие соответственно. Установлены связи между параметрами нелинейности векторной функции и их аналогами для ее координатных функций и ограничений на многообразия. Доказан аналог равенства Парсеваля для таких параметров векторных функций, из которого следует верхняя оценка нелинейности отображения над полем из $q$ элементов от $n$ переменных с $k$ координатами, равная $(q^k-1)q^{n-k}-q^{n/2-k}$. Найдены условия достижения указанной оценки, построен класс булевых векторных функций с высоким значением нелинейности. Получены оценки, характеризующие распределение нелинейности векторной функции и ее ограничений на многообразия.