RUS  ENG
Полная версия
ЖУРНАЛЫ // Дискретная математика // Архив

Дискрет. матем., 2022, том 34, выпуск 3, страницы 70–84 (Mi dm1734)

Эта публикация цитируется в 7 статьях

Предельное совместное распределение статистик критериев «Monobit test», «Frequency Test within a Block» и «Test for the Longest Run of Ones in a Block»

М. П. Савелов

МГУ им. М. В. Ломоносова

Аннотация: Найдено предельное совместное распределение статистик $T_1$, $T_2$, $T_3$ следующих трех критериев пакета НИСТ: «Monobit Test», «Frequency Test within a Block» и «Test for the Longest Run of Ones in a Block» в ситуации, когда исследуемая последовательность состоит из независимых случайных величин, имеющих распределение Бернулли с параметром $p = \frac12$. Установлены необходимые и достаточные условия асимптотической некоррелированности, а также необходимые и достаточные условия асимптотической независимости данных статистик. Доказано, что ковариационная матрица $C$ предельного распределения вектора $(T_1, T_2, T_3)$ удовлетворяет соотношениям $C_{12}=C_{21}=C_{13}=C_{31}=0$, $C_{23}=C_{32} \ge 0$. Для широкого класса значений $p \ne \frac12$ описано предельное поведение вектора $(T_1, T_2, T_3)$.

Ключевые слова: совместные распределения статистик, статистический пакет NIST, критерии согласия, критерий частот, критерий частот в блоках, тест на самую длинную последовательность единиц в блоке, асимптотически некоррелированные статистики, асимптотически независимые статистики.

УДК: 519.214.5+519.233.3

Статья поступила: 14.06.2022

DOI: 10.4213/dm1734


 Англоязычная версия: Discrete Mathematics and Applications, 2024, 34:5, 291–301


© МИАН, 2024