RUS  ENG
Полная версия
ЖУРНАЛЫ // Дискретная математика // Архив

Дискрет. матем., 2022, том 34, выпуск 4, страницы 84–98 (Mi dm1739)

Эта публикация цитируется в 6 статьях

Предельное совместное распределение статистик критериев «Monobit test», «Frequency Test within a Block» и «Binary Matrix Rank Test»

М. П. Савелов

МГУ им. М. В. Ломоносова

Аннотация: Найдено предельное совместное распределение статистик $T_1, T_2, T_3$ следующих трех критериев пакета NIST: «Monobit Test», «Frequency Test within a Block» и «Binary Matrix Rank Test» в ситуации, когда исследуемая последовательность состоит из независимых случайных величин, имеющих распределение Бернулли с параметром $p = \frac12$. Установлены необходимые и достаточные условия асимптотической некоррелированности, а также необходимые и достаточные условия асимптотической независимости данных статистик. Доказано, что ковариационная матрица $C=\|C_{ij}\|$ предельного распределения вектора $(T_1, T_2, T_3)$ удовлетворяет соотношениям $C_{12}=C_{21}=C_{13}=C_{31}=0$, $C_{23}=C_{32} \ge 0$. Для широкого класса значений $p \ne \frac12$ описано предельное поведение вектора $(T_1, T_2, T_3)$.

Ключевые слова: совместные распределения статистик, статистический пакет NIST, критерии согласия, критерий частот, критерий частот в блоках, критерий рангов бинарных матриц, асимптотически некоррелированные статистики, асимптотически независимые статистики.

УДК: 519.248

Статья поступила: 14.06.2022

DOI: 10.4213/dm1739



Реферативные базы данных:


© МИАН, 2025