Аннотация:
Пусть $\mathfrak{S}_{n}$ — полугруппа отображений множества $X$ из $n$ элементов в себя и $\mathfrak{S}_{n}(A)$ — совокупность отображений из $\mathfrak{S}_{n}$, размеры компонент которых принадлежат множеству $A$. Через $\sigma_n=\sigma_n(A)$ обозначим случайное отображение, имеющее равномерное распределение на множестве $\mathfrak{S}_{n}(A)$. Такие объекты были рассмотрены А. Н. Тимашевым в 2019 году. Для некоторого класса множеств $A$, имеющих положительные плотности в множестве $N$ натуральных чисел, найдена асимптотика числа элементов множества $\mathfrak{S}_{n}(A)$ при $n\rightarrow\infty$. Также получена оценка для расстояния по вариации между структурой отображения $\sigma_n(A)$ и соответствующей последовательностью независимых пуассоновских случайных величин.
Ключевые слова:отображения с ограничениями на размеры компонент, общее число элементов.