Аннотация:
В статье доказываются локальная и интегральная предельные теоремы для больших уклонений типа Крамера для критического ветвящегося процесса Гальтона–Ватсона в предположении, что радиус сходимости производящей функции числа потомков одной частицы строго больше единицы. Доказательство основано на модификации метода Крамера, которая в данном случае сводится к построению вспомогательного неоднородного во времени ветвящегося процесса.
Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект 02–01–01252, и INTAS, проекты 99–01317, 00–265.