Аннотация:
Предлагается алгоритм построения унитарного многочлена наименьшей степени, порождающего заданный отрезок $u(0,l-1)=(u(0),u(1),\ldots,u(l-1))$ длины $l$ с трудоемкостью $O(l^2)$ операций при $l\to\infty$. Рассматриваются случаи, когда $u(0,l-1)$ — отрезок над конечным кольцом $R$ с единицей, над конечным модулем $_RM$ или над конечным бимодулем $_AM_B$, где $A$ и $B$ — конечные кольца с единицами.