RUS  ENG
Полная версия
ЖУРНАЛЫ // Дискретная математика // Архив

Дискрет. матем., 1989, том 1, выпуск 1, страницы 22–28 (Mi dm893)

Центральная предельная теорема для сумм случайных величин, любые $r$ из которых независимы

Б. В. Гладков


Аннотация: Рассматривается последовательность серий равномерно бесконечно малых случайных величин $\{\xi_{nk}\}$, $n=1,2,\dots$ , $k=\overline{1,N_n}$, таких, что в $n$-й серии любые $r_n$ случайных величин независимы $(2\leqslant r_n<M_n)$, и последовательность серий независимых в каждой серии случайных величин $\{\widetilde\xi_{nk}\}$, $n=1,2,\dots$, $k=\overline{1,N_n}$ таких, что случайная величина $\widetilde\xi_{nk}$ следует асимптотическая нормальность с теми же параметрами $(a,\sigma)$ сумм $\sum_{k=1}^{N_n}\xi_{nk}$ при $n,N_n,r_n=r'_n\to\infty$ и любой скорости возрастания $r_n$. Тем самым усилен результат автора (РЖМат, 1983, 1В44), где это утверждение получено в условиях, когда $r_n$ и $N_n$ связаны определенной зависимостью вида $r_n=r(N_n)$.
Без каких-либо предположений о существовании моментов у случайных величин $\xi_{nk}$ и без задания совместных $m_n$-мерных $(m_n\geqslant r_n+1)$ распределений этих случайных величин в $n$-й серии доказано, что из асимптотической нормальности с параметрами $(a,\sigma)$ сумм $\sum_{k=1}^{N_n}\widetilde\xi_{nk}$ при $n,N_n\to\infty$.

УДК: 519.214

Статья поступила: 30.08.1988


 Англоязычная версия: Discrete Mathematics and Applications, 1991, 1:1, 73–79

Реферативные базы данных:


© МИАН, 2025