Аннотация:
Решается функциональное уравнение
$$
f_1(x_1+z)\ldots f_{s-1}(x_{s-1}+z)f_s(x_1+\ldots +x_{s-1}-z) =
\sum_{j=1}^{m} \varphi_j(x_1,\ldots,x_{s-1})\psi_j(z),
$$
относительно неизвестных функций $f_1,\ldots,f_s:{\Bbb Z}\to {\Bbb Z}$, $\varphi_j: {\Bbb Z}^{s-1}\to {\Bbb Z}$, $\psi_j: {\Bbb Z}\to {\Bbb Z}$ в случаях, когда
$s\ge 3$, а $m\le 2s-1$. Все неэлементарные решения имеют вид:
$$f_j(z) = \sigma(z+z_j) \exp(\alpha z^2 +\beta_j z + \gamma_j),$$ где $\sigma$ — сигма-функция Вейерштрасса, а $z_j,\alpha,\beta_j,\gamma_j \in {\Bbb Z}$.
Ранее такие результаты были известны при $m\le s+1$. Рассматриваемое уравнение возникает при изучении полилинейных функционально-дифференциальных операторов и векторных теорем сложения.