Аннотация:
Доказана теорема компактности для последовательностей функций, имеющих оценки старших производных в каждой подобласти области определения, разделенной на части последовательностью некоторых кривых класса $W_2^1$. При этом во всей области определения суммируемых старших производных эти последовательности не имеют. Эти результаты позволяют совершать предельные переходы по приближенным решениям в задачах с неизвестной границей, описывающих процессы фазовых переходов.
Ключевые слова:задачи Стефана, нелинейное параболическое уравнение, нецилиндрическая область, теорема компактности.