Аннотация:
В статье рассматривается нелокальная краевая задача для многомерного параболического уравнения с граничными условиями интегрального вида. Для решения задачи получена априорная оценка в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным на слое в $L_2$-норме. Для численного решения нелокальной краевой задачи строится локально-одномерная (экономичная) разностная схема А. А. Самарского с порядком аппроксимации $O(h^2+\tau)$, основная идея которой состоит в сведении перехода со слоя на слой к последовательному решению ряда одномерных задач по каждому из координатных направлений. Методом энергетических неравенств получены априорные оценки, откуда следуют единственность, устойчивость, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2$-норме со скоростью, равной порядку аппроксимации разностной схемы. Построен алгоритм численного решения.