RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Journal of Mathematical and Computer Applications // Архив

Eurasian Journal of Mathematical and Computer Applications, 2021, том 9, выпуск 4, страницы 17–25 (Mi ejmca194)

Эта публикация цитируется в 1 статье

Transmission eigenvalues for multipoint scatterers

P. G. Grinevichabc, R. G. Novikovde

a Steklov Mathematical Institute of RAS, 8 Gubkina St. Moscow, 119991, Russia
b Landau Institute of Theoretical Physics, pr. Akademika Semenova 1a, Chernogolovka, Moscow region, 142432, Russia
c Moscow State University, Leniskie gory, Moscow, Russia
d CMAP, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
e IEPT RAS, Moscow, Russia

Аннотация: We study the transmission eigenvalues for the multipoint scatterers of the Bethe–Peierls–Fermi–Zeldovich–Beresin–Faddeev type in dimensions $d = 2$ and $d = 3$. We show that for these scatterers: 1) each positive energy E is a transmission eigenvalue (in the strong sense) of infinite multiplicity; 2) each complex E is an interior transmission eigenvalue of infinite multiplicity. The case of dimension $d = 1$ is also discussed.

Ключевые слова: Schrödinger equation, transparency, transmission eigenvalues, multipoint scatterers.

Поступила в редакцию: 16.10.2021
Исправленный вариант: 19.11.2021
Принята в печать: 19.11.2021

Язык публикации: английский

DOI: 10.32523/2306-6172-2021-9-4-17-25



Реферативные базы данных:


© МИАН, 2024