RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Journal of Mathematical and Computer Applications // Архив

Eurasian Journal of Mathematical and Computer Applications, 2015, том 3, выпуск 2, страницы 70–99 (Mi ejmca78)

Two-dimensional analogs of the equations of Gelfand, Levitan, Krein, and Marchenko

S. I. Kabanikhin, M. A. Shishlenin

Novosibirsk State University

Аннотация: An algorithm for regularization of two-dimensional inverse coefficient problems is considered on the basis of a projection method and an approach proposed by I.M. Gelfand, B.M. Levitan, M.G. Krein, and V.A. Marchenko. An algorithm to reconstruct the potential, density, and velocity in two-dimensional inverse coefficient problems is described. Two dimensional analogs for the equations of Gelfand, Levitan, and Krein are obtained. A two dimensional analog of the Marchenko equation is considered for the Kadomtsev–Petviashvili equation. This approach can be generalized for corresponding multi-dimensional inverse problems. The results of numerical calculations are presented.

Ключевые слова: Gelfand-Levitan equation, Krein equation, Marchenko equation, inverse coefficient problem, inverse scattering problem.

MSC: 34M50, 49N45, 65L09

Поступила в редакцию: 20.05.2015

Язык публикации: английский



© МИАН, 2025