RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2010, том 1, номер 1, страницы 123–136 (Mi emj10)

Эта публикация цитируется в 1 статье

Cubature formulas of S. L. Sobolev: evolution of the theory and applications

M. D. Ramazanov, D. Y. Rakhmatullin, E. L. Bannikova

Institute of Mathematics and Computing Center, Ufa Science Center of the Russian Academy of Sciences, Ufa, Russia

Аннотация: The paper contains the description of the theory of approximate calculation of integrals over arbitrary multi-dimensional domains. This research branch is developed in several research centers in Russia and, in particular, in the Ufa Mathematical Institute of the Russian Academy of Sciences. We consider the best approximations of linear functionals on a certain semi-Banach space $B$ by linear combinations of the Dirac functions with supports in the nodes of a certain lattice:
$$ (l_N,f)\equiv\int\limits_\Omega f(x)\,dx-\sum_{k\in\mathbb{Z}^n,\atop H_N k\in\Omega}c_k f(H_N k), $$
where $H_N$ is an $n\times n$ matrix, such that $\det H_N\ne 0$ and $\det H_N\to 0$ as $N\to\infty$ and $f\colon\mathbb{R}^n\to\mathbb{C}$, $f\in B\subset C(\mathbb{R}^n)$.
This setting of the problem was given by academician Sergei L'vovich Sobolev in the middle of the last century.

Ключевые слова и фразы: cubature formulas for multi-dimensional domains, regular boundary layer formulas, bounded boundary layer formulas.

MSC: 65D32

Поступила в редакцию: 26.11.2009

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024