RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 2, страницы 104–139 (Mi emj126)

Эта публикация цитируется в 11 статьях

The Hardy space $H^1$ on non-homogeneous spaces and its applications – a survey

Da. Yanga, Do. Yangb, X. Fua

a School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People's Republic of China
b School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China

Аннотация: Let $(\mathcal X,d,\mu)$ be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions. In this article, the authors give a survey on the Hardy space $H^1$ on non-homogeneous spaces and its applications. These results include: the regularized $\mathrm{BMO}$ spaces $\mathrm{RBMO}(\mu)$ and $\widetilde{\mathrm{RBMO}}(\mu)$, the regularized $\mathrm{BLO}$ spaces $\mathrm{RBLO}(\mu)$ and $\widetilde{\mathrm{RBLO}}(\mu)$, the Hardy spaces $H^1(\mu)$ and $\widetilde H^1(\mu)$, the behaviour of the Calderón–Zygmund operator and its maximal operator on Hardy spaces and Lebesgue spaces, a weighted norm inequality for the multilinear Calderón–Zygmund operator, the boundedness on Orlicz spaces and the endpoint estimate for the commutator generated by the Calderón–Zygmund operator or the generalized fractional integral with any $\mathrm{RBMO}(\mu)$ function or any $\widetilde{\mathrm{RBMO}}(\mu)$ function, and equivalent characterizations for the boundedness of the generalized fractional integral or the Marcinkiewicz integral, respectively.

Ключевые слова и фразы: non-homogeneous space, Hardy space, $\mathrm{RBMO}(\mu)$, $\mathrm{RBLO}(\mu)$, atom, molecule, Calderón–Zygmund operator, fractional integral, Marcinkiewicz integral, commutator.

MSC: 42B30, 42B35, 42B20, 30L99

Поступила в редакцию: 17.02.2013

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024