RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 3, страницы 63–69 (Mi emj133)

New examples of Pompeiu functions

G. A. Kalyabin

Faculty of Physical, Mathematical, and Natural Sciences, Peoples’ Friendship University of Russia, 117198 Moscow, Miklukho-Maklaya 6

Аннотация: For given sequence of real numbers $\{x_k\}^\infty_1\subset I:=[0,1]$ the explicitly defined function $\varphi\colon I\to I$ is constructed such that $\varphi(x_k)=0$, $k\in\mathbb N$, $\varphi(x)>0$ a.e. and all $x\in I$ are Lebesgue points of $\varphi(\cdot)$. So its primitive $f(\cdot)$ is an everywhere differentiable strictly increasing function with $f'(x_k)=0$, $k\in\mathbb N$.

Ключевые слова и фразы: everywhere differentiable functions, strict monotonicity, dense zero set of a derivative, upper semi-continuity, Lebesgue points.

MSC: 26A24, 26A30, 26A42

Поступила в редакцию: 15.04.2013

Язык публикации: английский



© МИАН, 2024