RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 4, страницы 30–42 (Mi emj143)

Эта публикация цитируется в 3 статьях

On increase at infinity of almost hypoelliptic polynomials

H. G. Ghazaryan, V. N. Margaryan

Department of mathematics and mathematical modeling, Russian-Armenian (Slavonic) State University, 123 Ovsep Emin St., 0051 Yerevan, Armenia

Аннотация: It is proved that an almost hypoelliptic polynomial $P(\xi)=P(\xi_1,\dots,\xi_n)$ is increasing at infinity, i. e. $|P(\xi)|\to\infty$ as $|\xi|\to\infty$, if and only if the number $n$ of variables of $P$ is invariant with respect to any linear nondegenerate transformation $T\colon R^n\to R^n$.

Ключевые слова и фразы: almost hypoelliptic polynomial, linear transformation.

MSC: 12E10

Поступила в редакцию: 21.11.2012

Язык публикации: английский



© МИАН, 2024