RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2013, том 4, номер 4, страницы 88–100 (Mi emj146)

$\Gamma$-convergence of oscillating thin obstacles

Yu. O. Korolevaab, M. H. Strömqvistc

a Department of Differential Equations, Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
b Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
c Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Аннотация: We consider the minimization problems of obstacle type
$$ \min\left\{\int_\Omega|Du|^2\,dx\colon u\ge\psi_\varepsilon\ \text{on}\ P,\ u=0\ \text{on}\ \partial\Omega\right\}, $$
as $\varepsilon\to0$. Here $\Omega$ is a bounded domain in $\mathbb R^n$, $\psi_\varepsilon$ is a periodic function of period $\varepsilon$, constructed from a fixed function $\psi$, and $P\subset\subset\Omega$ is a subset of the hyper-plane $\{x\in\mathbb R^n\colon x\cdot\eta=0\}$. We assume that $n\ge3$ and that the normal $\eta$ satisfies a generic condition that guarantees certain ergodic properties of the quantity
$$ \#\left\{k\in\mathbb Z^n\colon P\cap\{x\colon|x-\varepsilon k|<\varepsilon^{n/(n-1)}\}\right\}. $$
Under these hypotheses we compute explicitly the limit functional of the obstacle problem above, which is of the type
$$ H^1_0(\Omega)\owns u\mapsto\int_\Omega|Du|^2\,dx+\int_PG(u)\,d\sigma. $$


Ключевые слова и фразы: obstacle problem, homogenization theory, $\Gamma$-convergence.

MSC: 49R99

Поступила в редакцию: 26.07.2013

Язык публикации: английский



© МИАН, 2024