Эта публикация цитируется в	
			6 статьях
				
			
				The real and complex techniques in harmonic analysis from the point of view of covariant transform
			
			V. V. Kisil		 School of Mathematics, University of Leeds, Leeds LS29JT, UK
					
			Аннотация:
			This paper reviews complex and real techniques in harmonic analysis. We describe the common source of both approaches rooted in the covariant transform generated by the affine group.
				
			
Ключевые слова и фразы:
			wavelet, coherent state, covariant transform, reconstruction formula, the affine group, 
$ax+b$-group, square integrable representations, admissible vectors, Hardy space, fiducial operator, approximation of the identity, atom, nucleus, atomic decomposition, Cauchy integral, Poisson integral, Hardy–Littlewood maximal function, grand maximal function, vertical maximal function, non-tangential maximal function, intertwining operator, Cauchy–Riemann operator, Laplace operator, singular integral operator (SIO), Hilbert transform, boundary behaviour, Carleson measure, Littlewood–Paley theory.	
			
MSC: Primary 
42-02;	Secondary 
42A20, 
42B20, 
42B25, 
42B35, 
42C40, 
43A50, 
43A80	Поступила в редакцию: 12.09.2013	
			
Язык публикации: английский