Эта публикация цитируется в
7 статьях
Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach
M. Dalla Rivaa,
M. Lanza de Cristoforisb a Departamento de Matemática, Universidade do Porto, Porto, Portugal
b Dipartimento di Matematica Pura ed Applicata, Università degli studi di Padova, Padova, Italia
Аннотация:
Let
$\Omega^{i}$ and
$\Omega^{o}$ be two bounded open subsets of
$\mathbb{R}^{n}$ containing
$0$.
Let
$G^{i}$ be a (nonlinear) map from
$\partial\Omega^{i}\times\mathbb{R}^{n}$ to
$\mathbb{R}^{n}$.
Let
$a^{o}$ be a map from
$\partial\Omega^{o}$ to the set
$M_{n}(\mathbb{R})$ of
$n\times n$ matrices with real entries. Let
$g$ be a function from
$\partial\Omega^{o}$ to
$\mathbb{R}^{n}$. Let
$\gamma$ be a positive valued function defined on a right neighborhood of
$0$ in the real line. Let
$T$ be a map from
$]1-(2/n),+\infty[\times M_{n}(\mathbb{R})$ to
$M_{n}(\mathbb{R})$. Then we consider the problem
\[
\{
\begin{array}{ll}
\mathrm{div} (T(\omega,Du))=0& {\mathrm{in}} \Omega^{o}\setminus\epsilon\mathrm{cl}\Omega^{i} ,
-T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}(x/ \epsilon,
\gamma(\epsilon)\epsilon^{-1}(\log\epsilon)^{-\delta_{2,n}}
u(x))&
\forall x\in\epsilon\partial\Omega^{i} ,
T(\omega,Du(x))\nu^{o}(x)=a^{o}(x)u(x)+g(x)&
\forall x\in\partial\Omega^{o} ,
\end{array}
.
\]
where
$\nu_{\epsilon\Omega^{i}}$ and
$\nu^{o}$ denote the outward unit normal to
$\epsilon\partial \Omega^{i}$ and
$\partial\Omega^{o}$, respectively, and where
$\epsilon>0$ is a small parameter. Here
$(\omega-1)$ plays the role of ratio between the first and second Lamé constants, and
$T(\omega,\cdot)$ denotes (a constant multiple of) the linearized Piola Kirchhoff stress tensor, and
$\delta_{2,n}$ denotes the Kronecker symbol. Under the condition that
$\gamma$ generates a very strong singularity,
i.e., the case in which $\lim_{\epsilon\to 0^{+}}\frac{\gamma(\epsilon)}{\epsilon^{n-1}}$ exists in
$[0,+\infty[$, we prove that under suitable assumptions the above problem has a family of solutions $\{u(\epsilon,\cdot)\}_{\epsilon\in ]0,\epsilon'[}$ for
$\epsilon'$ sufficiently small and we analyze the behavior of such a family as
$\epsilon$ is close to
$0$ by an approach which is alternative to those of asymptotic analysis.
Ключевые слова и фразы:
nonlinear traction boundary value problem, singularly perturbed domain, linearized elastostatics operator, elliptic systems, real analytic continuation in Banach space.
MSC: 35J65,
31B10,
45F15,
47H30,
74G99 Поступила в редакцию: 08.06.2010
Язык публикации: английский