RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2010, том 1, номер 2, страницы 31–58 (Mi emj16)

Эта публикация цитируется в 7 статьях

Hypersingularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach

M. Dalla Rivaa, M. Lanza de Cristoforisb

a Departamento de Matemática, Universidade do Porto, Porto, Portugal
b Dipartimento di Matematica Pura ed Applicata, Università degli studi di Padova, Padova, Italia

Аннотация: Let $\Omega^{i}$ and $\Omega^{o}$ be two bounded open subsets of $\mathbb{R}^{n}$ containing $0$. Let $G^{i}$ be a (nonlinear) map from $\partial\Omega^{i}\times\mathbb{R}^{n}$ to $\mathbb{R}^{n}$. Let $a^{o}$ be a map from $\partial\Omega^{o}$ to the set $M_{n}(\mathbb{R})$ of $n\times n$ matrices with real entries. Let $g$ be a function from $\partial\Omega^{o}$ to $\mathbb{R}^{n}$. Let $\gamma$ be a positive valued function defined on a right neighborhood of $0$ in the real line. Let $T$ be a map from $]1-(2/n),+\infty[\times M_{n}(\mathbb{R})$ to $M_{n}(\mathbb{R})$. Then we consider the problem \[ \{
\begin{array}{ll} \mathrm{div} (T(\omega,Du))=0& {\mathrm{in}} \Omega^{o}\setminus\epsilon\mathrm{cl}\Omega^{i} ,
-T(\omega,Du(x))\nu_{\epsilon\Omega^{i}}(x)=\frac{1}{\gamma(\epsilon)}G^{i}(x/ \epsilon, \gamma(\epsilon)\epsilon^{-1}(\log\epsilon)^{-\delta_{2,n}} u(x))& \forall x\in\epsilon\partial\Omega^{i} ,
T(\omega,Du(x))\nu^{o}(x)=a^{o}(x)u(x)+g(x)& \forall x\in\partial\Omega^{o} , \end{array}
. \] where $\nu_{\epsilon\Omega^{i}}$ and $\nu^{o}$ denote the outward unit normal to $\epsilon\partial \Omega^{i}$ and $\partial\Omega^{o}$, respectively, and where $\epsilon>0$ is a small parameter. Here $(\omega-1)$ plays the role of ratio between the first and second Lamé constants, and $T(\omega,\cdot)$ denotes (a constant multiple of) the linearized Piola Kirchhoff stress tensor, and $\delta_{2,n}$ denotes the Kronecker symbol. Under the condition that $\gamma$ generates a very strong singularity, i.e., the case in which $\lim_{\epsilon\to 0^{+}}\frac{\gamma(\epsilon)}{\epsilon^{n-1}}$ exists in $[0,+\infty[$, we prove that under suitable assumptions the above problem has a family of solutions $\{u(\epsilon,\cdot)\}_{\epsilon\in ]0,\epsilon'[}$ for $\epsilon'$ sufficiently small and we analyze the behavior of such a family as $\epsilon$ is close to $0$ by an approach which is alternative to those of asymptotic analysis.

Ключевые слова и фразы: nonlinear traction boundary value problem, singularly perturbed domain, linearized elastostatics operator, elliptic systems, real analytic continuation in Banach space.

MSC: 35J65, 31B10, 45F15, 47H30, 74G99

Поступила в редакцию: 08.06.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024