RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2014, том 5, номер 3, страницы 46–57 (Mi emj163)

Rate of approximation by modified Gamma-Taylor operators

A. Izgi

Department of Mathematics, Harran University, Science and Arts Faculty, Osmanbey Kampüsü, 63300-Ş.Urfa / Turkey

Аннотация: In this paper we consider the following modification of the Gamma operators which were first introduced in [8] (see [17], [18] and [8] respectively)
$$ A_n(f; x)=\int_0^\infty K_n(x, t)f(t)dt $$
where
$$ K_n(x, t)=\frac{(2n+3)!}{n!(n+2)!}\frac{t^nx^{n+3}}{(x+t)^{2n+4}}, \quad x, t\in(0, \infty), $$
and the following modified Gamma-Taylor operators
$$ A_{n,r}(f;x)=\int_0^\infty K_n(x, t)\left(\sum_{i=0}^r\frac{f^{(i)}(t)}{i!}(x-t)^i\right)dt. $$
We establish some approximation properties of these operators. At the end of the paper we also present some graphs allowing to compare the rate of approximation of $f$ by $A_n(f; x)$ and $A_{n,r}(f; x)$ for certain $n$$r$ and $x$.

Ключевые слова и фразы: approximation, Gamma operators, modulus of continuity in weighted spaces, linear positive operators, Taylor polynomials.

MSC: 41A10, 41A25, 41A30, 41A36

Поступила в редакцию: 31.08.2012

Язык публикации: английский



© МИАН, 2024