RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2015, том 6, номер 4, страницы 77–91 (Mi emj211)

Эта публикация цитируется в 1 статье

Open neighbourhood colouring of some path related graphs

N. N. Swamya, B. Sooryanarayanab

a Department of Mathematics, University College of Science, Tumkur University, Tumakuru, Karnataka 572103, India
b Department of Mathematical and Computational Studies, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka 560056, India

Аннотация: An open neighbourhood $k$-colouring of a simple connected undirected graph $G(V,E)$ is a $k$-colouring $c : V\to \{1,2,\dots,k\}$, such that, for every $w \in V$ and for all $u,v \in N(w)$, $c(u) \ne c(v)$. The minimal value of $k$ for which $G$ admits an open neighbourhood $k$-colouring is called the open neighbourhood chromatic number of $G$ and is denoted by $\chi_{onc} (G)$. In this paper, we obtain the open neighbourhood chromatic number of the line graph and total graph of a path $P_n$. We also obtain the open neighbourhood chromatic number of two families of graphs which are derived from a path $P_n$, namely $k^{th}$ power of a path and transformation graph of a path.

Ключевые слова и фразы: colouring, chromatic number, open neighbourhood, power graph, transformation graph.

MSC: 05C15

Поступила в редакцию: 08.01.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024