RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2016, том 7, номер 1, страницы 28–49 (Mi emj214)

Inequalities between the norms of a function and its derivatives

A. S. Kochurov

Department of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow 119991, Russia

Аннотация: The paper is devoted to the problem of finding the maximum of the norm $||x||_q$ with the constraints $||x||_p=\eta$, $||\dot{x}||_r=\sigma$, $x(0)=a$, $a, \sigma, \eta>0$, for functions $x\in L_p(\mathbb{R}_-)$ with derivatives $\dot{x}\in L_r(\mathbb{R_-})$, $0 < p \leqslant q < \infty$, $r > 1$. The arguments employed are based on the standard machinery of the calculus of variations.

Ключевые слова и фразы: inequalities for derivatives, necessary conditions for an extremum, Weierstrass formula, Euler equation.

MSC: 26D10

Поступила в редакцию: 30.11.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024