RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2016, том 7, номер 2, страницы 50–67 (Mi emj223)

The composition operator in Sobolev Morrey spaces

N. Kydyrminaa, M. Lanza de Cristoforisb

a Institute of Applied Mathematics, 28a Universitetskaya St., 100028 Kazakhstan, Karaganda
b Dipartimento di Matematica, Università degli Studi di Padova, via Trieste 63, 35121 Italy, Padova

Аннотация: In this paper we prove sufficent conditions on a map $f$ from the real line to itself in order that the composite map $f \circ g$ belongs to a Sobolev Morrey space of real valued functions on a domain of the $n$-dimensional space for all functions $g$ in such a space. Then we prove sufficient conditions on f in order that the composition operator $T_f$ defined by $T_f [g] \equiv f\circ g$ for all functions $g$ in the Sobolev Morrey space is continuous, Lipschitz continuous and differentiable in the Sobolev Morrey space. We confine the attention to Sobolev Morrey spaces of order up to one.

Ключевые слова и фразы: composition operator, Morrey space, Sobolev Morrey space.

MSC: 47H30, 46E35

Поступила в редакцию: 21.05.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024