Аннотация:
We prove an analogue of the Hahn–Banach theorem on the extension of a linear functional with a convex estimate for each abstract convex cone with the cancellation law. Also we consider the special class of the so-called strict convex normed cones $(SCNC)$. For such structures we obtain an appropriate analogue of the Hahn–Banach separation theorem. On the base of this result we prove that each $(SCNC)$ is sublinearly, injectively and isometrically embedded in some Banach space.
Ключевые слова и фразы:abstract convex cone, cancellation law, convex functional, Hahn–Banach theorem, convex normed come, Lemma on a support functional, strict convex normed cone, sublinear injective isometric embedding.