RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2016, том 7, номер 3, страницы 89–99 (Mi emj234)

Эта публикация цитируется в 6 статьях

An analogue of the Hahn–Banach theorem for functionals on abstract convex cones

F. S. Stonyakin

Department of algebra and functional analysis, Crimea Federal University, 4 V. Vernadsky Ave, Simferopol, Russia

Аннотация: We prove an analogue of the Hahn–Banach theorem on the extension of a linear functional with a convex estimate for each abstract convex cone with the cancellation law. Also we consider the special class of the so-called strict convex normed cones $(SCNC)$. For such structures we obtain an appropriate analogue of the Hahn–Banach separation theorem. On the base of this result we prove that each $(SCNC)$ is sublinearly, injectively and isometrically embedded in some Banach space.

Ключевые слова и фразы: abstract convex cone, cancellation law, convex functional, Hahn–Banach theorem, convex normed come, Lemma on a support functional, strict convex normed cone, sublinear injective isometric embedding.

MSC: 46A22, 46A20, 46B10

Поступила в редакцию: 27.04.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024