RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2016, том 7, номер 4, страницы 85–91 (Mi emj242)

Эта публикация цитируется в 1 статье

Short communications

On the solvability of parabolic functional differential equations in Banach spaces

A. M. Selitskiiab

a Peoples Friendship Uniersity of Russia (RUDN University), 6 Miklukho-Maklay St, 117198, Moscow, Russia
b Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 40 Vavilova St, 119333, Moscow, Russia

Аннотация: In this paper, a parabolic functional differential equation is considered in the spaces $C(0,T;H_p^1(Q))$ for $p$ close to $2$. The transformations of the space argument are supposed to be multiplicators of the Sobolev spaces with a small smoothness exponent. The machinery of the investigation is based on the semigroup theory. In particular, it is proved that the elliptic part of the operator is a generator of a strongly continuous semigroup.

Ключевые слова и фразы: functional differential equations, Lipschitz domain, Banach spaces.

MSC: 39A14

Поступила в редакцию: 10.06.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024