RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2017, том 8, номер 1, страницы 23–33 (Mi emj245)

Modular and norm inequalities for operators on the cone of decreasing functions in Orlicz space

E. G. Bakhtigareeva, M. L. Goldman

Department of Nonlinear Analysis and Optimization, Peoples' Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya St., 117198 Moscow, Russian Federation

Аннотация: Modular and norm inequalities are considered on the cone of all nonnegative functions as well as on the cone $\Omega$ of all nonnegative decreasing functions in the weighted Orlicz space. Reduction theorems are proved for the norm of positively homogeneous operator on the cone $\Omega$. We show that it is equivalent to the norm of a certain modified operator on the cone of all nonnegative functions in this space. Analogous results are established for modular inequalities.

Ключевые слова и фразы: weighted Orlicz spaces, modular and norm inequalities, cone of decreasing functions, reduction theorems.

MSC: 46E30, 42A16

Поступила в редакцию: 27.12.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024