RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2017, том 8, номер 1, страницы 50–57 (Mi emj247)

Эта публикация цитируется в 3 статьях

On an ill-posed problem for the Laplace operator with nonlocal boundary condition

T. Sh. Kal'menov, B. T. Torebek

Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan

Аннотация: In this paper a nonlocal problem for the Poisson equation in a rectangular is considered. It is shown that this problem is ill-posed as well as the Cauchy problem for the Laplace equation. The method of spectral expansion via eigenfunctions of the nonlocal problem for equations with deviating argument allows us to establish a criterion of the strong solvability of the considered nonlocal problem. It is shown that the ill-posedness of the nonlocal problem is equivalent to the existence of an isolated point of the continuous spectrum for a nonself-adjoint operator with the deviating argument.

Ключевые слова и фразы: Laplace operator, nonlocal boundary value problem, differential operator, criterion of well-posedness.

MSC: 31A30, 31B30, 35J40

Поступила в редакцию: 28.11.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024