RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2017, том 8, номер 1, страницы 58–66 (Mi emj248)

Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces

A. N. Kopezhanovaab

a Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Satpayev St 2, 010008 Astana, Kazakhstan
b Department of Engineering Sciences and Mathematics, Lulea University of Technology, SE 97187, Lulea, Sweden

Аннотация: The classical Hausdorff–Young and Hardy–Littlewood–Stein inequalities, relating functions on $\mathbb{R}$ and their Fourier transforms, are extended and complemented in various ways. In particular, a variant of the Hardy–Littlewood–Stein inequality covering the case $p\geqslant2$ is proved and two-sided estimates are derived.

Ключевые слова и фразы: Fourier transform, Hausdorff–Young's inequality, generalized Lorentz spaces, weight function, generalized monotone function.

MSC: 46E30, 42A38

Поступила в редакцию: 25.06.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024