RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2017, том 8, номер 2, страницы 47–73 (Mi emj256)

Эта публикация цитируется в 4 статьях

On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions

V. D. Stepanovab, G. E. Shambilovac

a Steklov Institute of Mathematics, 8 Gubkina St, 119991 Moscow, Russia
b Department of Nonlinear Analysis and Optimization, RUDN University, 6 Miklukho-Maklay St, 117198 Moscow, Russia
c Department of Mathematics, Financial University under the Government of the Russian Federation, 49 Leningradsky Prospekt, 125993 Moscow, Russia

Аннотация: We solve the characterization problem of $L_v^p-L_{\rho}^r$ weighted inequalities on Lebesgue cones of monotone functions on the half-axis for quasilinear integral operators of iterated type with Oinarov's kernels.

Ключевые слова и фразы: Hardy type inequality, weighted Lebesgue space, quasilinear integral operator, Oinarov's kernel, cone of monotone functions.

MSC: 26D15

Поступила в редакцию: 18.11.2016

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024