RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2017, том 8, номер 3, страницы 70–76 (Mi emj267)

Эта публикация цитируется в 6 статьях

On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces

R. Sengupta

S.M. Nikol'skii Mathematical Institute, Department of Nonlinear Analysis and Optimization, Peoples' Friendship University of Russia (RUDN University), 6 Mikhluko-Maklaya St, 117198 Moscow, Russia

Аннотация: We study geometric properties of $(q_1, q_2)$-quasimetric spaces and fixed point theorems in these spaces. In paper [1], a fixed point theorem was obtained for a contraction map acting in a complete $(q_1, q_2)$-quasimetric space. The graph of the map was assumed to be closed. In this paper, we show that this assumption is essential, i.e. we provide an example of a complete quasimetric space and a contraction map acting in it whose graph is not closed and which is fixed-point-free. We also describe some geometric properties of such spaces.

Ключевые слова и фразы: fixed point, quasimetric space.

MSC: 54H25, 47H04

Поступила в редакцию: 30.04.2017

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024