Аннотация:
Following an idea of Ornstein and Sucheston, Foguel proved the so-called uniform
"zero-two" law: let $T:\ L^1(X,\mathcal{F}, \mu)\to L^1(X,\mathcal{F}, \mu)$ be a positive contraction. If for some
$m\in\mathbb{N}\cup\{0\}$ one has $||T^{m+1}-T^m||<2$, then
$$
\lim_{n\to\infty}|| T^{m+1}-T^m||=0.
$$
In this paper we prove a non-associative version of the unform "zero-two" law for positive
contractions of $L_1$-spaces associated with $JBW$-algebras.
Ключевые слова и фразы:zero-two law, positive contraction, Jordan algebra.