RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2018, том 9, номер 1, страницы 40–68 (Mi emj286)

Least squares estimator asymptotics for vector autoregressions with deterministic regressors

K. T. Mynbaev

International School of Economics, Kazakh-British Technical University, Tolebi 59, Room 419, 050035 Almaty, Kazakhstan

Аннотация: We consider a mixed vector autoregressive model with deterministic exogenous regressors and an autoregressive matrix that has characteristic roots inside the unit circle. The errors are $(2+\epsilon)$-integrable martingale differences with heterogeneous second-order conditional moments. The behavior of the ordinary least squares (OLS) estimator depends on the rate of growth of the exogenous regressors. For bounded or slowly growing regressors we prove asymptotic normality. In case of quickly growing regressors (e.g., polynomial trends) the result is negative: the OLS asymptotics cannot be derived using the conventional scheme and any diagonal normalizer.

Ключевые слова и фразы: time-series regression, asymptotic distribution, OLS estimator, polynomial trend, deterministic regressor.

MSC: 46N30, 97K80

Поступила в редакцию: 06.10.2016
Исправленный вариант: 01.02.2017

Язык публикации: английский



© МИАН, 2024