Аннотация:
We investigated a minimal closed in the space $l_2$ first order nonsymmetric difference operator $L$. The matrix of zero order coefficients of $L$ may be an unbounded operator. The study of $L$ is motivated by applications to stochastic processes and stochastic differential equations. We obtained compactness conditions and exact with respect to the order two-sided estimates for $s$-numbers of the resolvent of $L$. Note that these estimates for $s$-numbers do not depend on the oscillations of the coefficients of $L$, in contrast to the case of a differential operator.
Ключевые слова и фразы:difference operator, coercive estimate, compactness of the resolvent, singular numbers.