RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2018, том 9, номер 4, страницы 9–21 (Mi emj309)

On the Dirichlet problem for the Laplace equation with the boundary value in Morrey space

N. R. Ahmedzade, Z. A. Kasumov

Institute of Mathematics and Mechanics of NAS of Azerbaijan, 9 B. Vahabzade St., AZ1141, Baku, Azerbaijan

Аннотация: The class of Poisson–Morrey harmonic functions in the unit circle is introduced, some properties of functions of this class are studied. Nontangential maximal function is considered and it is estimated from above via maximum operator, and the proof is carried out for the Poisson–Stieltjes integral, when the density belongs to the corresponding Morrey–Lebesgue space. The obtained results are applied to solving of the Dirichlet problem for the Laplace equation with the boundary value in Morrey–Lebesgue space.

Ключевые слова и фразы: Morrey–Poisson class, maximal function, Morrey–Lebesgue space.

MSC: 30E25, 46E30

Поступила в редакцию: 20.02.2017
Исправленный вариант: 06.11.2018

Язык публикации: английский

DOI: 10.32523/2077-9879-2018-9-4-9-21



Реферативные базы данных:


© МИАН, 2024