RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2018, том 9, номер 4, страницы 91–98 (Mi emj315)

Эта публикация цитируется в 1 статье

On commutativity of circularly ordered c-o-stable groups

V. V. Verbovskiy

Center of Mathematics and Cybernetics, The Kazakh-British Technical University, 59 Tole bi St, 050000, Almaty, Republic of Kazakhstan

Аннотация: A circularly ordered structure is called c-o-stable in $\lambda$, if for any subset $A$ of cardinality at most $\lambda$ and for any cut $s$ there exist at most $\lambda$ one-types over $A$ that are consistent with $s$. A theory is called c-o-stable if there exists an infinite $\lambda$ such that all its models are c-o-stable in $\lambda$. In the paper, it is proved that any circularly ordered group, whose elementary theory is c-o-stable, is Abelian.

Ключевые слова и фразы: circularly ordered group, o-minimality, commutative group, o-stability.

УДК: 03B10, 03C52, 03C60, 03C64

Поступила в редакцию: 09.02.2017

Язык публикации: английский

DOI: 10.32523/2077-9879-2018-9-4-91-98



Реферативные базы данных:


© МИАН, 2024