RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2019, том 10, номер 1, страницы 59–79 (Mi emj323)

Hahn–Banach type theorems on functional separation for convex ordered normed cones

F. S. Stonyakin

Department of algebra and functional analysis, Crimea Federal University, 4 V. Vernadsky Ave, Simferopol

Аннотация: We consider a special class of convex ordered normed cones CONC. For such structures we obtain Hahn–Banach type theorems on functional separation for points. On the base of a Hahn–Banach type theorem on functional separation for points we prove a sublinear version of the Rädström embedding theorem for the class CONC. Some analogues of Hahn–Banach separation theorem for some type of sets in CONC are obtained.

Ключевые слова и фразы: abstract convex cone, Hahn–Banach separation theorem, strict convex normed cone, convex ordered normed cone, sublinear injective isometric embedding, Rädström embedding theorem.

MSC: 46A22, 46A20, 46B10

Поступила в редакцию: 20.02.2017
Исправленный вариант: 06.09.2018

Язык публикации: английский

DOI: 10.32523/2077-9879-2019-10-1-59-79



Реферативные базы данных:


© МИАН, 2024