RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2019, том 10, номер 2, страницы 65–74 (Mi emj330)

Эта публикация цитируется в 4 статьях

Maximal regularity estimates for higher order differential equations with fluctuating coefficients

K. N. Ospanov, Zh. B. Yeskabylova, D. R. Beisenova

Department of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, 13 Munaitpasov St., 010008 Astana, Kazakhstan

Аннотация: We give the well-posedness conditions in $L_2(-\infty,+\infty)$ for the following differential equation
$$ -y'''+p(x)y'+q(x)y=f(x), $$
where $p$ and $q$ are continuously differentiable and continuous functions, respectively, and $f\in L_2(R)$. Moreover, we prove for the solution y of this equation the following maximal regularity estimate:
$$ ||y'''||_2+||py'||_2+||qy||_2\leqslant C||f||_2 $$
(here $||\cdot||_2$ is the norm in $L_2(-\infty,+\infty)$). We assume that the intermediate coefficient $p$ is fast oscillating and not controlled by the coefficient $q$. The sufficient conditions obtained by us are close to necessary ones. We give similar results for the fourth-order differential equation with singular intermediate coefficients.

Ключевые слова и фразы: differential equation, oscillating coefficient, well-posedness, maximal regularity estimate.

MSC: 34A30, 34B40, 34C11

Поступила в редакцию: 30.04.2018

Язык публикации: английский

DOI: 10.32523/2077-9879-2019-10-2-65-74



Реферативные базы данных:


© МИАН, 2024