RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2019, том 10, номер 4, страницы 85–91 (Mi emj350)

Эта публикация цитируется в 5 статьях

The solvability results for the third-order singular non-linear differential equation

Zh. B. Yeskabylovaa, K. N. Ospanova, T. N. Bekjanb

a Department of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, 13 Munaitpasov St., 010008 Nur-Sultan, Kazakhstan
b Colledge of Mathematics and System Sciences, Xinjiang University, Urumqi, China

Аннотация: We give some conditions for solvability in $L_2(\mathbb{R})$ ($\mathbb{R}=(-\infty,+\infty)$) of the following singular non-linear differential equation:
$$ ly\equiv-y'''(x)+q(x,y,y')y'+s(x,y,y')y=h(x). $$
We assume that $q$ and $s$ are real-valued unbounded functions and $q$ does not obey the “potential” $s$. For the solution $y$ we prove that
$$ ||y'''||_2+||q(\cdot,y,y')y'||_2+||s(\cdot,y,y')y||_2<\infty, $$
where $||\cdot||_2$ is the norm in $L_2$. To establish these facts, we use coercive solvability results for the corresponding linear third-order differential equation obtained by us earlier.

Ключевые слова и фразы: non-linear differential equation, intermediate term, solvability, estimates of solutions.

MSC: 34A34, 34B40, 34C11

Поступила в редакцию: 17.08.2019

Язык публикации: английский

DOI: 10.32523/2077-9879-2019-10-4-85-91



Реферативные базы данных:


© МИАН, 2024