Аннотация:
Let $A$ be a square complex matrix; $z_1,\dots,z_n\in\mathbb{C}$ be (possibly repetitive) points of
interpolation; $f$ be a function analytic in a neighborhood of the convex hull of the union of the
spectrum of $A$ and the points $z_1,\dots,z_n$; and $p$ be the interpolation polynomial of $f$ constructed by
the points $z_1,\dots,z_n$. It is proved that under these assumptions
$$
||f(A)-p(A)||\leqslant \frac1{n!}\max_{t\in[0,1]\atop {\mu\in co\{z_1,z_2,\dots,z_n\}}}||\Omega(A)f^{(n)}((1-t)\mu\mathbf{1}+tA)||,
$$
where $\Omega(z)=\prod_{k=1}^n(z-z_k)$ and the symbol $co$ means the convex hull.
Ключевые слова и фразы:matrix function, polynomial interpolation, estimate.