RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2021, том 12, номер 1, страницы 49–56 (Mi emj391)

Эта публикация цитируется в 7 статьях

One-phase spherical Stefan problem with temperature dependent coefficients

S. N. Kharinab, T. A. Nauryzbca

a Department of Mathematical and Computer Modeling, Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan
b Kazakh-British Technical University, 59 Tole bi St, 050000 Almaty, Kazakhstan
c Al-Farabi Kazakh National University, 71/23 Al-Farabi St, 050040/A05E3B3 Almaty, Kazakhstan

Аннотация: The one-phase spherical Stefan problem with coefficients depending on the temperature is considered. The method of solving is based on the similarity principle, which enables us to reduce this problem to a nonlinear ordinary differential equation, and then to an equivalent nonlinear integral equation of the Volterra type. It is shown that the obtained integral operator is a contraction operator and a unique solution exists.

Ключевые слова и фразы: Stefan problem, nonlinear thermal coefficients, explicit solution, nonlinear integral equation, melting.

MSC: 80A22, 35K05, 45D05

Поступила в редакцию: 01.10.2020
Исправленный вариант: 31.01.2021

Язык публикации: английский

DOI: 10.32523/2077-9879-2021-12-1-49-56



Реферативные базы данных:


© МИАН, 2024