RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2021, том 12, номер 3, страницы 90–93 (Mi emj417)

Эта публикация цитируется в 4 статьях

Short communications

On the inequality of different metrics for multiple Fourier–Haar series

A. N. Bashirovaa, E. D. Nursultanovb

a Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, 13 Kazhymukan Munaitpasov St, 010008 Nur-Sultan, Kazakhstan
b M.V. Lomonosov Moscow State University, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, 010010 Nur-Sultan, Kazakhstan

Аннотация: Let $1<p<q<\infty$, $f\in L_p[0, 1]$. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier–Haar series $\{||S_{2^k}(f)||_{L_q}\}_{k=0}^\infty$ the following relation is true $||S_{2^k}(f)||_{L_q}=O\left(2^{k\left(\frac1p-\frac1q\right)}\right)$. In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that $||S_{2^{k_1}2^{k_2}}(f)||_{L_{\overline{q}}}=o\left(2^{k_1\left(\frac1{p_1}-\frac1{q_1}\right)+k_2\left(\frac1{p_2}-\frac1{q_2}\right)}\right)$ for $f\in L_{\overline{p},\overline{\tau}}[0, 1]^2$.

Ключевые слова и фразы: Fourier series, Haar system, inequality of different metrics, anisotropic Lebesgue and Lorentz spaces.

MSC: 42B05, 46E30

Поступила в редакцию: 01.08.2020

Язык публикации: английский

DOI: 10.32523/2077-9879-2021-12-3-90-93



Реферативные базы данных:


© МИАН, 2024