Аннотация:
Let $\Lambda=\{\lambda_n\}$ be the sequence of all zeros of the entire function $\Delta(\lambda)=1-i\lambda\int_0^1f(t)e^{i\lambda t}dt$
of exponential type. We consider exponential system of functions $e(\Lambda)=\{t^{p-1}e^{i\lambda_nt}, 1\leqslant p\leqslant m_n\}$, where $m_n$ — is the multiplicity of the zero $\lambda_n$. The question is: for which $a$, $b$ ($a<b$) is the system $e(\Lambda)$ complete (incomplete) in the space $L^2(a, b)$? Let $D$ be the length of the indicator conjugate diagram of the entire
function $\Delta(\lambda)$. Then the following statements are valid:
when $b-a>D$ the system $e(\Lambda)$ is incomplete in $L^2(a,b)$;
when $b-a<D$ the system $e(\Lambda)$ is complete in $L^2(a,b)$;
if we remove from $\Lambda$ any two points $\lambda$ and $\mu$, then the system $e(\Omega)$, $\Omega=\Lambda\setminus\{\lambda,\mu\}$ is incomplete in $L^2(a,b)$ also when $b-a=D$.
Ключевые слова и фразы:Lebesgue-Stieltjes integral, indicatrix of the growth, Borel adjoint diagram, Beurling-Malliavin
multiplier theorem, Paley-Wiener theorem, Cartwright class.