Аннотация:
In this work, we give estimates for the norm of the integral operator
\begin{equation}
H: L_{p, v}\to L_{q, u}, \quad (Hf)(x):=\int_a^x k(x, t)f(t)dt
\tag{0.1}
\end{equation}
with the so-called Oinarov's kernel$k(x, t)$ in the weighted Lebesgue spaces
$$
L_{p, v}=\{f: ||f||_{p, v}^p:=\int_a^b |f(t)|^p v(t)dt<\infty\}
$$
and
$$
L_{q, u}=\{f: ||f||_{q, u}^q:=\int_a^b |f(t)|^q u(t)dt<\infty\},
$$
in the case $1<q<p<\infty$.
Ключевые слова и фразы:integral operator, norm, weight function, Lebesgue space, integral inequality, kernel.