RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2022, том 13, номер 4, страницы 18–43 (Mi emj451)

Эта публикация цитируется в 1 статье

Methods of trigonometric approximation and generalized smoothness. II

S. Artamonova, K. Runovskib, H.-J. Schmeisserc

a National Research University Higher School of Economics, Moscow, Russian Federation
b Lomonosov Moscow State University, Moscow, Russian Federation
c Friedrich-Schiller University, Jena, Germany

Аннотация: The paper deals with the equivalence of approximation errors in $L_p$-spaces ($0<p<\infty$) with respect to approximation processes, generalized $K$-functionals and appropriate moduli of smoothness. The results are used to derive various characterizations of periodic Besov spaces by means of constructive approximation and moduli of smoothness. The main focus lies on spaces $\mathbb{B}_{p,q}^s(\mathbb{T}^d)$, where $0 < p < 1$, $0 < q \leqslant\infty$ and $s > 0$.

Ключевые слова и фразы: trigonometric approximation, summability, $K$-functionals, moduli of smoothness, periodic Besov spaces.

MSC: 46E35, 42A10, 42B35, 41A17

Поступила в редакцию: 01.10.2022

Язык публикации: английский

DOI: 10.32523/2077-9879-2022-13-4-18-43



Реферативные базы данных:


© МИАН, 2024