Аннотация:
We prove the existence of a weak energy solution for the boundary value problem
\begin{eqnarray*}
-\mathrm{div}\, a(x, u, Du) &=& f \text{ in } \Omega,\\
u &=& 0 \text{ on } \partial\Omega,
\end{eqnarray*}
where $\Omega$ is a smooth bounded open domain in $\mathbb{R}^n$ ($n\geqslant 3$) and $f\in L^\infty(\Omega;\mathbb{R}^m)$. The existence result is proved using the concept of Young measures.
Ключевые слова и фразы:quasilinear elliptic systems, weak energy solution, Young measure.